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Plan of the presentations

e Lens paradigm
« TPSA + a Small Code

 Geometric Integration: Almost indispensible in
Rings

 Normal Form: "Universal Twiss Algorithm".

* Full exploitation of the lens paradigm: fibre
structure (Not in SAD)
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The biggest accelerator, where is it? CERN (3 & Z T3 7> ?
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Salient Points 5

1) Importance of single particle dynamics &/ %2 &

2)Lens based theory (technologically derived) L > XD E
b Hf6IRE L)

3)Computers are hierarchical => search for a hierarchical
theory @G oL v — & = > @G (layered
structure)

4)Truncated Power Series Algebra and approximate Taylor
Maps fits in that hierarchical theory( W) 0 ¥ C o727 A

7 —iRE DGR, T DOREEHERICINE D)

5) The concept of a Normal Form is central to a
hierarchical theory 2% O EIT FEEEEGR O FLTH S




Schematic diagram of the hierarchical structures
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A few points

Importance of single particle dynamics in accelerators as
the starting point of more complex effects

1) We first start a machine with low current: single particle
dynamics holds perfectly. {& &' — A& TIEE 5.

2)We then slowly built up the current. Due to the highly
relavistic aspect of the machine, most collective effects are
happening in a plane perpendicular to the motion.
(Pancake model) B 1% 1 12TV T, Z2f B E 2 #ilE
NTER G

3) Therefore the lens paradigm | will describe, while 99%

correct in the absence of collective effects, still holds well
in the presence of collective phenomena. 7275 L 2 XD

TERAL 13, 1T EAEFE T,



Constrasting system- > A7 A O g
« Type 1) Detectors: F=ma (18 O ELT")

* Rings: Reformulate using Lenses L > XD 570 6 B E AUk

Accelerating cavity

) It accelerates particles with high
Beam is sent to synchrotron frequency by applying an electric
accelerator from the pre-accelerator  field at the right timing of the

(Tandem or Linac, etc.). particles passing through.

Beam is sent to the
beam utilizing course

Charged particles travel
i after acceleration.

around the track in a fixed
orbit by electromagnet.




Ordinary: Detector, Planetary motion, etc..
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Real simulation
> The yellow areas schematically represent coils or metal which
/ produces the B-field in the device.The orange lines represent symbolically

the "action at a distance."



Standard Strategy from High School Physics
PRYERY 72 71E (SR DY)

1) Compute the magnetic field B at the position x
of the particle in the device

2) The motion obeys Newton/Lorentz's laws

restmass (X S charge

— = 9
dt
d

—myw = qUXB
dt

3) Integrate numerically from time t to time t+dt

Titdt R T+ dt Uy

e ﬁ A
Ut+-dt ~ Vs T+ dt { UV X B(Jff)}

mey




Now we look at an Accelerator

The Lens Formulation
Lo ADERAL
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Free space
No field

Trajectory in an Accelerator
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Trivial Consequence 255l 72 it

\

M 291 Mol Dy AAS
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Surface B/

It is possible to concatenate (composed) maps into one big map.
L ADFLOERILHR D,
I i
T2 ERHEKS,

Map = Mz oDy o MsoDy oMy



Integration: magnet looks a Beam Line
o AT E—L T4 DX IR XD

dz=L/9
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Trajectories attached to magnets
BB A ISR S LTV D

Besser tot, als rot! T 7 T

Not all trajectories are considered
W ODDELEDFHHE STV AR




Simulation Programs : I =L —Y a7 v/ 7 A
Each magnet has a unique role

Each magnet produces its unique field
Each magnet controls the particle motion independently of other magnets

Accelerating Cavity [ >
Simulation programs have a catalog of magnets
Vial—yarorual T A, BaohH
07 aFfo TV D
Bl 213

i |

Multipoles



http://acc-physics.kek.jp/SAD/
http://mad.web.cern.ch/mad/http://mad.web.cern.ch/mad/

Summary

« Standard Laws of Physics: Detectors, Planets...

Arrangement of hardware -> Global B -> Propagate a time dt

* Lens based approach: Accelerators, Microscopes,
spectrometres,...

hardware={set of magnets}-> each magnet -> its B field -> its propagator through it
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A projectile in a frictionless situation!
RO IR\ BREE TIES




F:ma e Yy=—¢g and z=0

Solution — » y(t)= —1/2gt*+ vt and z(t) = vt



« When we shoot, we are not interested in the
trajectory as a function of time (unless you are
being counter-snipered) but as a function of z

« Specifica
e Starts to

ly z=0 and z=L!

ook like a magnet in a ring or linac!




Question

Can we use "z", the length along the trajectory to
parametrlze the motion?

RFRI D "Z" DA VI H Z & 1E 7?7

Answer

Yes! Provided we consider trajectories towards the
target only! Better be fine with a gun!

H—J7MiLE 25 ET D,




If we have the time-solution...

Since we have the solution, we can invert in terms of z:

9
2 V0 z

- —1/2 I d t(z) =
y(2) /2 g v§0 | ’U,zoz an (2) -

But in general we do not have the time-solution




S0 we re-express the equations of motion

d? d?
in general if d—tg = F, and Ej = F,

2
Chain Rule . d Y L dvy dvy

— = = —2u, = F
dt2  dt dz ° Y

ay __

dz Uy

dv,  F,

dz v,

dt _ 1

dz v,

dv. _ F.
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dt

dz
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dz

In our gun case:




But physicists like the Hamiltonian!

Z

>

The motion can be derived from something called the Hamiltonian which happens

here to be the energy of the system!

1
H = Energy = 5 {p;

dt O

dp _  OH
dt  OF

s}

gy < m=1 (more like a canon ball!)



Hamilton's Equations with Time

¢ OH df  OH

it  op dt = OF

a Y . j=—-g and #=0

ar Dz Same as before!




Lens version i.e. using "z"

1
H = Energy = 5 {pz +p§} + 9y

i

2
K = —p, = —(2H — p; — 2gy)
The resulting equations are
dy/dz = OK/Opy = py/\/2H — Dy — 29y = py/p-
dp, /dz = —0K /0y —g/\/QH—’P@% — 29y = —g/p-

dt/dz = —OK/OH 1/\/2H —p2 — 29y =1/p.
dH dz — 0K /ot — 0

1/2




Numerical results

Putting some numbers into the equation

glem/SQ;m:SOOm/s; yo = 0; L =60 m

The blue curve is some ideal
trajectory.

The red curves are various shots
missing the bullseye!

These were computed using the
Hamiltonian K and integrating it
from z=0 to z=L.




For the mathematically oriented

* The motion can be derived from minimizing a
functional: the role of t and z seem symmetric!

T,

0A=19

$0=t0

p-dr— Hdt =
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xr1,t1 Z1,t1

0A = 0 p-dr— Hdt =0 p-dr+ p¢ dt

.‘f{},,t(} :E*Uatﬂ' ~
—H
T1,t1
= 9 pzdx + pydy + p.dz + pedt
Zo,to
T1,t1
= 9 LAT d dt — K dz
- 4 PyaY T+ Pt , ,

_pz

Provided z(t) is monotonous for the trajectories
(true unless you consider pointing the rifle in your
face), it seems that K=-p_could play the role of a

z-parameterized Hamiltonian for the motion along
the positive z-axis. (z plays the role of time)



Conclusion: we do the same for
magnets

N2
H:\/m264—|— (ﬁ—qA) c2

\J

1
IS\C\/H‘Q\mQCél — (P2 — qu)QCQ —(py — qA’y)QCQ — q4;

P, Energy and time are depedent variables



Conclusion on Lens Paradigm

—

Besser tot, als rot! — _— [

\' Trajectories attached to magnets
s e

Not all trajectories considered



Some simple magnets

* We will look at a quadrupole and a dipole
(ideal sector bend)

* We will then write simples codes by ourself
and compare with the code MAD-X of CERN

* These codes compile using the free g95
compiler.



ldeal Quadrupole

! 2
K= _E\/Hz —m?ct — (pr — qAs)"¢® — (py —qAy)"c® — qA.
!
A, = _E (332 —y2)
2
k B’
Ky = _\/1+25/50+52—P§—p§+ 5( > —y*) where k = pq
0
K is in scaled variables
r \ old
_ (H o HU) L Dz y
g = and  py ., =
poc Po




ldeal Sector Bend

2

X
Ky = = (14 ha) /14 25/ + €2 = p3 —p3 + ba + h)
‘%/_/
Drift in Polar Coordinates Multipole Kick
h=1
/p L \@F L
b=h=1/p

on design orbit




Notice the the Hamitonian are Non-linear

k
Ko o= —\1+2/0+e—p—pi+ (s~ )
2 2
Small angles p,+Dp ke
~ J I —( Q—yz)_l_

2(1+2¢/Pg +€2) 2

/

Quadratic Hamiltonian: very popular in Accelerator Physics

Lead to the false belief that quadrupoles are linear elements!

P — Do

1+2/fo+e”=(1+8)" o= Do poc



Sector Bend

2
K, = —(1+h:z:)\/1+26/30+62—p§—p§+b<3: | h:;)

Small angles pi + pz
2 (1 + 26/,80 + 62)

72
—hxﬁ—l—b(m—l—h?) — hx---

If b=h => ideal orbit. No linear terms in the Hamiltonian

Again, sector bends appear linear!



System for which we will write a small code:
next lecture

X

T o - —F g

2 2
£ e ;}}. ET—pe

K;=—p: + +
g i 2(1 + py) : 2

2 2 3 LB
Px + Py x> —3xy
Ki=—-p+—— 4+ Lkgb(s — s0) :

Solution for thin sextupoles

. ;_}?"al = p, — Lks(x* — y?) and p?"ﬂl = py+ Lks2xy
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