Safety

The 27th KEKB Accelerator Review Committee 2024.3.26 Toshihiro Mimashi

Contents

- Issues of radiation Safety
 - Radiation level on the Beam Transfer Line
 - Radiation level on Fuji and Tsukuba experimental hall
 - Radiation level on Oho experimental hall (NLC in Oho straight section)
- ECS Cavity installation on Beam Transfer Line
- Fire caused by power supplies
- Personnel Protection System modification for tuning of injection beam (Fuji Mode)

Radiation restriction Level

- General area $< 0.2 \mu Sv/h$
- Radiation monitoring area (KEK) < 1.5μ Sv/h
- Radiation control area (Nuclear Regulatory Agency) $< 20\mu$ Sv/h

Radiation level measurement @ BT

Radiation level on the Beam Transfer Line

Radiation Level above the Beam Transfer Line

Beam	Repetion Rate	# of Bunches	Beam Charge (1st Bunch)	Beam Charge (2 nd Bunch)
e-	25Hz	2 Bunch	1.47nC	1.05nc
e+	25Hz	2 Bunch	1.26nC	1.2nC

Radiation level in front of the most upstream BT escape exit is high

Before tuning: 0.8μ Sv/h (must be 0.2μ Sv/h or less) \rightarrow Mainly it comes from electron beam After tuning: 0.13μ Sv/h

Optical Fiber loss monitor

2024/3/25

7

5000

Screen Monitor inserted in the beam line

Radiation Level outside of tunnel becomes high

->Repetition Rate is limited to 1 Hz Average Repetion Rate < 0.3 Hz /Hour

H.Iwase

12.5Hz Beam Repetition Rate

測定結果

ビームロス条件 1						
測定点	Nal	IC	レム			
1	0.15	0.0	0.000			
2	0.20	0.0	0.000			
3	0.20	0.0	0.150			
10	7.50	14	35			
Ū	0.40	0.0	0.380			
12	1.05	1.5	3.0			
13	0.25	0.0	0.010			
14)	0.20	0.0	0.000			
(21)	0.25	0.0	0.000			

1.5

0.0

0.0

0.0

1.50

0.20

0.20

0.20

10

(12) 13

(15)

44

0.000

5.34

0.200

0.000

0.000

ビームロス条件 ③					
測定点	Nal	IC	レム		
3	0.80	0.0	0.000		
10	1.80	2.5	10		
12	0.35	0.0	0.550		
13	0.20	0.0	0.000		

ビームロス条件 4

ビームロス条件 5

IC

0.0

0.0

0.8

IC 3.5

0.0

0.3

LL

0.000

0.000

0.930

Nal

0.15

0.15

0.55

Nal

1.80

0.25

0.10

測定点

4

10

(13)

測定点

10

(12)

13

Ł	ス条件[6	
測定点	Nal	IC	44
6	0.19	0.5	0.600
16	0.13	0.0	0.011
17	0.20	0.5	0.860
(18)	0.10	0.0	0.040

1	E	ビームロス条件 7					
1	測定点	Nal	IC	44			
1	1	0.55	1.0	5.2			
1	17	0.30	1.0	1.5			
]	(18)	0.12	0.0	0.007			

5		ビームロス条件 8				
	44	測定点	Nal	IC	44	
	6.55	19	0.07	0.0	0.003	
	0.260	20	0.20	0.0	0.013	
	0.000					

H.Iwase

COMPANY SHI ANNA THINK					
Contraction of the Party		測定点	Nal	IC	
16AR南建屋前		1	0.15	0.0	0
(HAP本 本例計車場	Machtail	2	0.20	0.0	0.
CARINI IN DIAL 4 10	COULT &	3	0.20	0.0	0.
	19 IU 7 F 4	10	7.50	14	Γ
	C. Standard	1	0.40	0.0	0.
	12. 5. 1/189	(12)	1.05	1.5	
S. CAN	11 100/	13	0.25	0.0	0.
		14)	0.20	0.0	0.
	STANDAL STA	(21)	0.25	0.0	0.
	-				
		Ł	ニームロ	ス条件	2
	•	測定点	Nal	IC	
		2	0.20	0.0	0.

Radiation level on Fuji and Tsukuba experimental hall

General area $< 0.2 \mu Sv/h$

Radiation monitoring area(KEK) < 1.5μ Sv/h

Radiation level on Oho experimental hall

Non-Linear Collimator (NLC) is installed Oho straight section

Surround the beam pipe with 5cm of lead. (5m long)

Assumption of Simulation Hit 10¹⁰ positron / s hits the collimator head

Y. Sakaki

Surround the beam pipe with 5cm of lead 5m.

Surround the beam pipe with 5cm of lead + Stainless Steel (or polyethylene) 11-13m.

Y. Sakaki

Y. Sakaki

S.Terui

ECS Cavity installation on Beam Transport Line Tunnel

Fire caused by power supply

- MR Power Supply Fire (April 25th):
 - Occurred in a newly developed power supply.
 - Incompatible parts (transformer) in the startup circuit (initial charge).
 - The experience and knowledge that should be shared among J-PARC and KEK accelerator personnel was not sufficiently utilized.
- Hadron Power Supply Fire (June 22nd):
 - The parts have deteriorated due to long-term use (manufactured in 1985).
 - There was a blind spot in the inspection that was neither on the power supply side nor on the load (magnet) side. => Polarity Changer
 - Not enough consideration was given to blind spots in inspection and the possibility of deterioration due to thermal stress due to stable operation over a long period of time.

MR Power Supply Fire (April 25th): Occurred in transformer of a magnet power supply.

K.Bessho

Trouble suddenly Occured No signs could be observed

Policy at KEK

- Polarity Changer
 - For power supplies that have the same type of polarizer that caught fire at J-PARC, remove the polarizer or replace it with a more commonly used device.
- Confirm the status of periodic inspections of equipment.
 - Equipment in operation that has not yet been inspected will be inspected immediately and a report will be made to the supervising engineer.
 - Reconfirm that there are no blind spots or deteriorated parts.
 - In areas subject to thermal stress, check for deterioration of components and loosening of bolts.
 - The status of fever will be confirmed using radiation thermometers, thermo-cameras, and pasting of thermo labels.
- When restarting stored old equipment, be sure to conduct a pre-use inspection.

As a continued response in the future

- Power supply equipment related to accelerator operation shall be regularly maintained and inspected by the manufacturer. For power supply units that are approximately 40 years old or older and have not been regularly maintained by the manufacturer, we recommend updating or replacing them so that they are not used for steady, continuous operation.
- Conduct cross-organizational reviews and confirmation work for newly manufactured equipment.
- Consider improving the sophistication of interlocks that operate in the event of a power failure.
- Network cameras will be gradually introduced as they will help detect power failures early and help determine whether or not to enter a room in the event of a fire.

Personnel Protection System modification for tuning of injection beam (Fuji Mode)

- Issues of Injection beam tuning
 - Injection beam tuning with a beam dump inside the injector cannot be performed for the e+ and e- beams at the same time.
 - Requires polarity reversal of the electromagnet at the injector end
 - BT dump mode cannot be used while entering the KEKB main ring.

Personnel Protection System was modified to solve these problems

Fuji mode

• The PPS was modified so that even if there are people in the Tsukuba Area, a beam can be transferred all the way to BT End.

• Injection beam tuning is possible even during long-term shutdown of Belle (LS1)

• Even if there is tunnel access for Belle work or work in the accelerator hardware group, the injection beam can be tuned during the day.

Fuji Mode Areaの Personnel Key (Fuji,6C,9C)

