

# Control

Hitoshi Sugimura
(On behalf of SuperKEKB Control Group)

# **SuperKEKB Control System Overview**

Controlled apparatuses of the large-scale accelerators are installed in the large area. (Note, SuperKEKB circumference ~3km.)

**⇒ Distributed Control System** with ethernet

#### **Central Control Room (CCR):**

Operators control all hardware via the network and IOCs.

#### **Sub Control Rooms (SCRs):**

I/O controllers (IOCs) are installed. IOC controls individual hardware.





# **EPICS(Experimental Physics and Industrial Control System) for Control System Software**

- The network protocol among IOCs is unified. Channel Access.
- ⇒ Capability for improvement and extension of IOC
- ⇒ Adapting to new requests during the operation
- Software is developed and maintained with the worldwide collaboration of accelerator facilities
  - ⇒ Possibility to employ sources developed by other institutes.

## **IOC at SuperKEKB**

There are more than 300 IOCs at CCR and SCRs.
 Mostly, the industrial CPUs like VME, PLC, or µTCA-types are utilized.
 In addition, the development of embedded-type and the application of PC

| Group   | VME | PLC | μ <b>TCA</b> | PC | Embedded | Other |
|---------|-----|-----|--------------|----|----------|-------|
| Magnet  | 9   | 30  | 0            | 0  | 0        | 0     |
| RF      | 7   | 24  | 65           | 0  | 0        | 9     |
| Monitor | 48  | 7   | 0            | 0  | 0        | 0     |
| BT      | 14  | 23  | 0            | 0  | 10       | 0     |
| Control | 22  | 0   | 0            | 19 | 5        | 0     |
| Vacuum  | 2   | 29  | 0            | 0  | 0        | 0     |
| Safety  | 0   | 6   | 0            | 0  | 0        | 0     |



Embedded-type (19inch rack, 1U



### Number of Control info.

- Hardware 10,000

- control info. 200,000



CPU I/O module



## Sustainability

# CPU of VME (MVME series) and PLC (f3rp61) are discontinued

• f3rp71, which is successor module, is already using in operation.





# The feasibility of microTCA.4 architecture as a control system is being evaluated

- Start evaluation at test stand.
- As a first step, we are evaluating the feasibility of the timing system.



# **Bucket Selection for Bunch Current Equalization (BCE)**

- Injection Bucket is decided from Bunch Current Monitor Value
- The value is transmitted with Shared Memory(RM)
- Calculate Timing according to decided bucket
- Timing Information is transmitted Main Timing Station, and generate Timing From EVG/EVR Timing modules







## **BCE** in 2-bunch injection

- Bucket Selection Software is updated and BCE in 2-bunch injection is READY.
- We expect to increase luminosity in this period by BCE 2-bunch injection.

#### Bunch Current unbalance in 2-bunch injection

Two-bunch injection is carried out for LER in the 2022ab run.

⇒ Sometimes, the bunch current became unbalanced.



In the current Bunch selection system, Bunch Current Equalizing (BCE) is not implemented in the 2-bunch injection.

It is upgrade plan for LS-1.

## **Turn-by-turn BPM trigger**

### Trigger is upgraded.

- The new test trigger is developed.
- The vertical kicker and RF kick are available.
  - => Now we can induce the oscillation to the x/y/z directions. **See Ohnishi-san's** slides for more detail.

(Good collaborative works with BT, monitor, and optics groups have been done.)

• The injection to the other ring is possible during the study.

### Many upgrade item can be considered.

- Synchronization between BPM and loss monitor (ex. CLAWS).
  - => gives us the calibration of the beam loss monitor
  - => gives us more detailed mechanism of the beam loss in both the injection and LINAC SBL.
- Include Belle II
  - => makes capability for the beam background study
- Database development, maybe based on EPICS7
  - => increases the potential users in the offline analysis. Even though oversea colleagues.

#### **LER horizontal kick**



#### **HER horizontal kick**

Event

from





## Short-term trial for the synchronization with loss monitor

HER Vertical kick study on March 5<sup>th</sup>.



We plan to upgrade this system to be regularly operated.



## New abort diagnose system

# The White Rabbit timestamp is put to all abort request signals.

- The accuracy of the timestamp becomes from ~100us to 8ns-100ns (depend on the condition).
- It will be stronger tool to understand the source of the beam abort.

# Hardware development is finished during LS-1

- The 8ns-resolution-TDC based on "SPEC+FMC-DIO"
- Same as the loss monitor for the SBL diagnose.
- 8 slave node-station (D01/D02/D04/D05/D07/D08/D10/D11)
- Master-station (CCB)

### Software development is on-going.



## **Computing System**

### Rackmount type of computers

- Operation was started from 2020
- 4 nodes are located at KEK network, and 9 nodes are located at SuperKEKB control network.

## **Each Service is Running on Virtual Machine**

- We could migrate easily even if physical host computer fails.
- To reduce the impact of failures, VMs are setup for each service.
  - web, Postgres, epics softioc, working for user ... and so on
- System configuration is managed by CODE (Infrastructure as Code)
  - We adopt "Ansible" playbook.
  - The code is managed by version control system(git) and stored web-based remote repository (ĜitLab)

## **Upgrade of OS was done (CentOS7⇒AlmaLinux9) in 2023 Summer**

• As the end of Life is approaching, almost all server which includes VMs were upgraded.





## **Network**

# Layer3 Core Switch connected to Layer 2 Edge Switch configuration

2 Core Switches and 39 Edge Switches.

## **10G/1G** redundant configuration

Spanning tree protocol

## **Each Network Component Replaced Every Year**

- 2019, 2021, 2022 Edge Switch was replaced
- 2020 Core Switch was replaced
- 2023 Firewall was replaced
- 2024 Wireless LAN will be replaced

#### core switch





# Software Development utilizing web technology

## **Many Web Tools**

#### Grafana

- Monitors Computer and Network resource (storage, traffic, CPU load, memory and so on.)
- These information is retrieved in Zabbix

#### Kibana

- Views various Logs (web access log, computer process log ... etc.)
- Logs stored in Elastic Search

#### **GitLab**

- Version Control System with "git" for remote repository
- Easy to see diffs











## **Communication Tool**



#### **Mattermost**

- Slack-like chat tool
- Began operating with an On-Premise Server from July. 2022
- Not only SuperKEKB but also PF, PF-AR, cERL project use our Mattermost.
- About 100 people participated in SuperKEKB Team
  - Roughly half of the people are always Online.
  - There is a lot of "Flank" communication taking place on the server.
  - Many discussions are stored in the server's internal storage and can be searched.
- SuperKEKB ITF teams is also working on another server.



# **Auto generation of Shift Report**

# Shift Report had been made PowerPoint since KEKB era for each shift.

- It is difficult to find out when the events of the past occurred.
- It takes much time to make the report.

## Auto generation system is developed

- Many kinds of trend graph is generated and automatically put the Shift Report website.
- Gather some events (Abort and Knob Scan etc.) from operation log with web scraping.

### Shifter can write memo(note) on the GitLab wiki

- The notes are sent to Shift Report website.
- Both Trend graph and notes can be viewed on a single website

#### Shift Report page





## **Summary**

### SuperKEKB Control System is based on EPICS distributed system

More than 300 IOCs, and 200,000 PVs

Sustainability of CPU is evaluating for next generation BCE algorithm in 2-bunch injection is ready for operation Trigger for Turn by Turn BPM was upgraded New abort diagnose system with WR is developing Computer and Network

- Upgraded OS
- Replace Network components every year

#### **Web Tools**

- Grafana, Kibana is monitored in computer health
- GitLab is introduced as not only version control but also shift report
- Mattermost for chat communication