Injection

T. Yoshimoto

on behalf of

LINAC beam analysis group, Beam Injection Task Force (BITF), and Injection Commissioning Group (ICG)

Content

- Injector complex overview
- Injection status
- BT beam emittance issues
- 4-GeV positron studies in BT
 - 1.1-GeV positron beam emittances at RTL after damping ring
 - Beam bump studies on unidentified CSR
 - XY coupling studies
 - Raster scan to observe "magnetic lens" distortion
 - Summary of emittance blowup
 - LER dynamic aperture ($\beta_y^* = 3 \sim 1 \text{ mm}$)
- 7-GeV electron beam status in BT
 - Electron beam emittance status
 - Local vertical bump study in BTe Arc1-3 & dispersion measurement
 - HER dynamic aperture ($\beta_y^* = 3 \sim 1 \text{ mm}$)
 - On-momentum dynamic aperture degradation due to QCS cancel-coil errors
 - TbT-BPM measurements in HER (β_y * = 1 mm)
 - Synchrotron injection
- Summary

- RTL: D<u>R-T</u>o-Linac Beam Transport
- ECS/BCS: <u>Energy/Bunch</u> <u>Compression</u> <u>System</u>
- BT: <u>B</u>eam <u>T</u>ransport line
- LER/HER: Low/High Energy Ring for e+/e-
- How to achieve these parameters toward higher luminosity?
- Emittance blowups in BTe/p are currently one of the bottlenecks.

Injector beam parameters (design)*:

Beam	Positron	Electron	
Beam energy	4.0	7.007	GeV
Normalized emittance $\gamma \varepsilon_{x/y}$	100/15	40/20	$\mu { m m}$
Energy spread	0.16	0.07	%
Bunch charge	4	4	nC
No. of bunches/pulse	2	2	
Repetition rate	5	0	Hz

* H. Akai, et al., https://arxiv.org/pdf/1809.01958.pdf

Short-term Injection Status ($\beta_y^* = 1 \text{ mm}$)

HER

- Raw injection efficiency : 20~40%
- Effective injection efficiency : ~20%.
- Large injection background

Measures:

- 1) two-bunch injection, 2) higher bunch charge,
- 3) higher rep. rate, 4) low-emittance injected beams, ...

Raw inj. efficiency

Effective inj. efficiency

LER

- Raw injection efficiency : ~ 90%
- Effective injection efficiency : 10~90%

(shorter lifetime at high currents)

Large injection background

Measures:

1) two-bunch injection, 2) higher bunch charge, 3) higher rep. rate, 4) large dynamic aperture, ...

Injected beam quality and stability are the key toward high current operation => 1) higher injection efficiency, 2) lower background, 3) fewer injection related aborts => relaxed collimator setting => lower impedance, ...

3/25/2024

Injection Stability (Feb. 1~ Mar. 21, 2024)

HER

- After $\beta_y{}^{\star}$ = 1 mm, poor raw beam injection efficiency: $60\% \rightarrow 20\%$
- Low stability of raw beam injection efficiency

LER

60 ~ 90%.

Low stability of raw beam injection efficiency:

BT Beam Emittance Issues

Primary sources of horizontal emittance blowup in BTe¹): 1) ISR (incoherent synchrotron radiation): +~30 um 2) CSR (coherent synchrotron radiation): +~60 µm (2 nC)

•

Supe

<EKE

Vertical emittance blowup remains unaddressed. (3D-CSR?)

1) https://www-kekb.kek.jp/MAC/2022/Report/lida.pdf

Nominal particle tracking simulations (SAD, ELEGANT) after DR show negligible ISR and CSR effects.

BTp2 BTp1 T. Yoshimoto Simulation^{1,2} 120.0--- BTp2 w/o CSR -BTp1 w/ CSR -BTp2 w/ CSB 117.5 115.0(pure 112.5 110.0 لوًا 107.5 × 105.0 102.5 100.0^{\Box}_{0} Bunch charge (nC) 10 - BTp1 w/o CSR BTp1 w/ CSR (µmrad)

Measurement

BT2

- .70939 c0 = 9561883 +/- 23.0988

BT1

ChiSquare = .00230 Goodness c2 = 2568388 +/- 3.38093

ВТр

Ę.

<u>ا</u>

BT1X

BT2X

BT2X

We should check it! Measured results showed large bunch-charge dependent emittance growths. Does a longitudinal spiky bunch profile cause unidentified CSR effect? 3/25/2024 T. Yoshimoto | The

Positron Beam Studies

1.1-GeV Positron Beam Emittances in RTL After Damping Ring

- No large emittance blowup after DR
- No large bunch charge dependence of beam emittances

3

How to Confirm Unidentified CSR Effect in BT

What is the source of emittance growth?:

Unidentified CSR effect can be caused by a longitudinal spiky bunch profile.

Countermeasure setup:

Most beam ducts of bending magnets in Arc1 were offset to suppress unidentified CSR

See talk on "BT" for hardware in detail

Side effects:

1) Large resistive wall (RW) impedance

RW impedance can increase beam emittances due to the finite conductivity of beam ducts.

2) Vertical dispersion caused by vertically offset bending magnets

9

Countermeasures Against Side Effects

Off-axis RW impedance effect^[1]:

T. Ishibashi , T. Yoshimoto

Larger displacement gives similar vertical dipole and quadrupole impedances.

For very small displacement cases, the vertical dipole impedance is ~2X higher than the quadrupole one.
 => It is consistent with analytical results in Chao's 2003 paper.

Simulation results:

Super KEKB

<u>a</u>

 Significant vertical emittance growth was caused by duct displacement >= 14 mm in this simulation, <u>whereas13 mm</u> <u>displacement was acceptable</u>.

13 mm duct offset is not harmful and adapted.

[1] T. Yoshimoto, BITF, Aug 25, 2023, https://kds.kek.jp/event/47643/

Optics with ver. dispersion suppression in Arc 1: N. lida

btp_BH1P_MULT_APERT_AveMeasMag2.sad, pbunchnc nC

Simulation results:

Optic can be cured with vertical correctors and quadrupoles

BTp-Arc1 Bump Height Dependence of Beam Emittances @ MSP15

Scheme:

- 1. Change BTp Arc1 bump height:0, 14 mm
- 2. Measure vertical emittance with MSP15-OTR

Measurement results:

- ECS setting slightly affects hor. and ver. beam emittances.
- BTp Arc1 vertical bump height does not change hor. and ver. emittances at MSP15 in BTp2. 2

=> No symptom of CSR wake and RW wake effects

Measurement: 20231228

11

BTp-Arc2-3 Bump Height Dependence of Beam Emittances @ MSP15

Horizonta

emittance

emittanc

(mm)

Vertical

ε_{nx}

Scheme:

1. Change BTp Arc2-3 bump height: -10 ~ 3 mm 2. Measure vertical emittance with MSP15-OTR

Ver. trajectory

Measurement results:

<EK8

0-----

- No large bunch-charge dependence of beam emittance was observed. => No wake field effect including CSR effect. It is consistent with nominal simulation results.
- Ver. bump height dependence of beam emittance and Twiss params were observed. => There would be unidentified (high-order?) magnetic errors in BTp-Arc 2-3.

Measurement: 20231223

Energy Spread Dependence of Beam Emittance

ECS-E_S: 35 kV

~202312240700 (3 nC), 202312242300~ (1, 2 nC)

- LINAC RF phase for minimum energy spread generally does not give minimum beam emittances in both hor. and ver. directions.
- In actual operation, the phase should be optimized to minimize
 1) energy spread, 2) hor. emittance and 3) ver. emittance comprehensively.

Local Vertical Bump Study in BTp Arc2-3

N. lida

Where are unexpected magnetic errors?

Scheme:

- Change a local vertical bump position:
- Observe X-Y coupling from BPM signals 2.

QBD4P: -7mm

Unexpected X-Y coupling was observed near Arc3 entrance.

History of BTp Arc 2-3

- Arc3 bending magnet (BH3P type):
 - Saddle-type coil •
 - Non-conventional V-shaped yoke ٠
 - Asymmetric insertion of 6-mm iron plate on upper pole surface (BH2P, BH3P) ۲ to increase dipole field
- Permanent skew quads at the entrances of many Arc2-3 bending magnets
 - In the past, they were placed to reduce unexpected vertical dispersion in this section.
 - It works well to reduce vertical emittance blowup significantly, ٠ although vertical residual emittance blowup remains (M. Kikuchi).

-mm iron plat

BH3P type

Physical sources of the XY coupling have not been identified.

Arc2-3 XY-Coupling Analysis

- In simulations, some quadrupole rotation errors reproduce the XY coupling, although experts say such large rotational errors are unlikely.
- Each error case has solutions for XY-decoupling with a new skew quad around the first bending magnet of Arc-3
- Further study is ongoing.

Measurement:

XY-coupling @ BTp ARC2-3 QCD2P: -14mm

Y. Seimiya

16

Realistic SAD Simulations With Multipoles of Bending Magnets and Others

Multipoles on BH2P/BH3P (refined bend model)

Tracking by SAD includes:

- multipoles in BH1P/2P/3P (Tawada)
- vertical offset of BH1P (lida)
- measured rotation/pitch errors of quads in ARC3 (Tawada)
- perm. skew quads for dispersion correction (Kikuchi)
- · measured emittances at BT1 (Yoshimoto) scaled on particles @ linac exit (lida)
- additional sextupole at BH3P.1 based on bump meas. (Yamaguchi, Iida)
- refined bend model
- synchrotron radiation in all elements

K. Oide, Feb. 14, 2024 @ICG Multipole calculation, quad roll: M. Tawada Perm. skew Q: M. Kikuchi Emittance meas. @BT1 T. Yoshimoto Sext. meas., Lattice, initial particles, etc.: N. lida, Y. Seimiya, T. Yamaguchi

K2, 1/m ²	0	0.65
γε _x @BT2, μm	153	160
γε _y @BT2, μm	16	17

K. Oide

linac-btp_BH1P_MULT_APERT_AveMeasMag3_20231202.sad	linac-btp_BH1P_MULT_APERT_AveMeasMag3_20231202.sad
$K2_{SKBH3P} = 0 / m^2, K1_{SKBH3P} = 0 / m$	$K2_{SKBH3P} = .64935 / m^2$, $K1_{SKBH3P} = 0 / m$
$ = \frac{\sqrt{B_x}}{\sqrt{B_x}} $	$\begin{bmatrix} 2\\ 2\\ 2\\ 1\\ 1\\ 2\\ 2\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
¹⁴⁰ ¹³⁰ ¹³⁰	
120 + + + + + + + + + + + + + + + + + + +	120
Ê 20	€ 20 • γε _y
Ξ 15 ώ 10	3 15
* 5	× 5
0 50 100 150 200 250 300 350 400 m	0 50 100 150 200 250 300 350 400 m
╔┼┼┼┽ _╋ ╅┼┟┼ <u>┿</u> ┽┽┼┽╶╴┽╶╴┽╶╴ ┍╶╷╴┍╴╝╗╗╗╖╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗╗ ┲┼┲┾╋╡╇╗	┎ _┪ ╪╪┽ _╈ ╅╤╪╪ _╋ ┙┽╤╪╤╤╤╤╧╝╴ ╡╶╕╶╕╶╕╶╕╶╕╶ ╴╤╴╧ _╋ ╗╋╋┿╗┿╗┿ <mark>╗┿╗┿╗┿╗┿╗┿╗┿╕╴╴╴╴┿╶╶╴╴┾╴╴╴╴┿╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴</mark>

This simulations reveal that 1) multipoles of bending magnets and 2) sextupole component from the measured XY coupling can reproduce measured X/Y emittances in BT2.

3/25/2024

Raster Scan to Observe "Magnetic Lens" Distortion

Basic idea:

In general, beam optics and light optics have a common theory

=> Beam optics distortion is visually observable!

Scheme:

- 1. Change X and Y corrector kicks in BT1 in a grid pattern.
- 2. Measure downstream BPM response.

Results:

- Slight XY coupling is observed in Arc-2 ••
- Strong XY correlation just after the first Arc-3 bending magnet •
- It is useful to get better linearity region in a magnetic field. •
- Further study is necessary.

[1]

Preliminary

3/25/2024

Summary of Emittance Blowup

- The horizontal blowup here is suspected at an accelerator structure in the BCS.
- The vertical blowup here is being understood by the BT study in 2023.

3 nC	DR (design)	RTL (MSs08)	Sector 3 (WSs)	Sector 5 (WSs)	BT1 (MWP.1-4)	after Arc1 (MSP.8)	BT2 (MSP.15)
γε _x [μm]	65	76.04	147.5	228±53	156.5 ± 35.9	155	175
γε _γ [μm]	0.65(ĸ=1%)	0.24	1.5	2.2 ± 0.3	11.3 ± 2.6		24

3 [nC] e+ BT1-→BT2	Measured	Simulation (K. Oide)
γε _x [μm]	130→175±10	130→160
γε _y [μm]	$5 \rightarrow 20 \pm 1$	5 →17
Super		

3/25/2024

The simulations have good agreement with the measurements.

LER Dynamic Aperture ($\beta_y^* = 3 \sim 1 \text{ mm}$ **)**

1) Hor. aperture

horizontal acceptance, $2J_x$ [µm]			
Maximum action of injected beam (6.25 $\epsilon_{x_{rms}}$), 2 J_x [µm]		1.41	
βy* LER	3 mm	1 mm CW off	1 mm
Measured (Simulated) vertical acceptance, $\gamma 2 J_{y}$ [µm]	No data	No data	No

βy* LER

Measured (Simulated)

2) Ver. aperture py

βy* LER	3 mm	1 mm CW off	1 mm CW 80%
Measured (Simulated) vertical acceptance, $\gamma 2 J_y$ [µm]	No data	No data	No data
Maximum action of injected beam(9 $\epsilon_{y_{rms}}$) , $\gamma 2 J_y$ [µm]		196.7	

3 mm

2.24 (4.88)

3) Momentum aperture

Super KEKB

0-----

βy* LER	3 mm	1 mm CW off	1 mm CW 80%
Measured (Simulated) momentum acceptance, p/p_0 [%]	0.38 (1.26)	0.53 (1.33)	0.61 (1.11)
Simulated injected beam momentum spread (99%) [%]		~0.32	

Raw LER injection efficiency: ~90%.

Y. Ohnishi, N.Iida

0.90 (3.37)

1 mm CW 80%

~1.6 X

1 mm CW off

1.13 (3.77)

3/25/2024

7-GeV Electron Beam Transport Status

Known sources of hor. emittance blowup¹):

- 1) Incoherent Synchrotron Radiation (ISR)
- 2) Coherent Synchrotron Radiation (CSR)

1) https://www-kekb.kek.jp/MAC/2022/Report/lida.pdf

Electron Beam Emittance Status

Reference data: Run 2022-Nov-5 (J-ARC R56=0)

- Unexpected additional vertical emittance blowup was observed after BT1.
- The blowup is necessary to be mitigated, prior to high-current operation (>1 A).

Local Vertical Bump Study in BTe Arc1-3 & Dispersion Measurement

Local Vertical Bump Study

No obvious X-Y coupling was observed with horizontal and vertical local bumps (±7mm) in Arc 1 or 2-3.

Undesigned vertical dispersion was observed in Arc1. It is still a mystery.

HER Dynamic Aperture ($\beta_y^* = 3 \sim 1 \text{ mm}$)

1) Hor. aperture

2)	Ver.	aperture	py ▲
2)	Ver.	aperture	p` ▲

βy* HER	3 mm	1 mm CW off	1 mm CW 40%
Measured (Simulated) horizontal acceptance, $2J_x$ [µm]	3.89 (3.31)	1.34 (2.77)	1.13 (2.77)
Maximum action of injected beam (9 $\epsilon_{x_{rms}}$), 2 J_x [µm]		1.07~1.1	✓ ~1 X

βy* HER	3 mm	1 mm CW off	1 mm CW 40%
Measured (Simulated) vertical acceptance, $\gamma 2 J_y$ [µm]	1187 (3982)	649 (973)	712 (973)
Maximum action of injected beam(9 $\epsilon_{ m y_rms}$) , $\gamma 2 J_{ m y}$ [µm]		1068~3263	♥ 1.5~ <u>4.5</u> X

3) Momentum aperture

Super KEKB

0-----

βy*	3 mm
Measured momentum acceptance, p/p_0 [%]	0.69
Simulated injected beam momentum spread (95%) [%]	~0.31

 Small ver. aperture and large ver. emittance reduce a raw HER injection efficiency: ~30%.

Y. Ohnishi, N.Iida

3/25/2024

TbT¹⁾-BPM Measurements in HER ($\beta_v^* = 1 \text{ mm}$)

¹⁾turn-by-turn

TbT beam survival at a BPM (MQEAE27)

Local TbT beam survival

- Approximately 50 % of the injected beam is lost within the first two turns by D12 collimator.
- The beam loss location of the injected beam at the 2nd turn varies in each injection.
 - => It is consistent with narrow horizontal and vertical dynamic aperture ($\beta y^* = 1 \text{ mm}$)

for present injected beam with large emittance blowup.

Super KEKB

<u>a</u>___

On-Momentum Dynamic Aperture Degradation due to QCS Cancel-coil Errors^[1]

- QCS cancel-coil errors reduced on-momentum dynamic aperture (2Jx) by ~25%.
- It is crucial for HER beam injection.

3/25/2024

[1] M. Kikuchi, "Simulation of the injected beam in HER (2)", SKB Commissioning meeting, Dec. 22, 2023, https://kds.kek.jp/event/49259/

T. Yoshimoto | The 27th KEKB Accelerator Review

M. Kikuchi

Synchro-beta Injection (1)

M. Kikuchi

Synchro-beta Injection

- Synchrotron injection was proposed to recover the aperture for the injected beam.
- But momentum aperture is not enough.
- Synchro-beta scheme may be a possible option.
- In the synchro-beta injection, energy offset and the betatron amplitude shares the distance between kicker-orbit and injection beam.

$$\Delta x = \eta_x \, \delta + \Delta x_\beta$$

Assumption $\begin{aligned} \Delta x &= -10 \text{ mm,} \\ \eta_x &= 1 \text{ m,} \quad \beta_x &= 100 \text{ m,} \end{aligned}$

for example,

3/25/2024

 $\Delta x_{\beta} = -3.65 \text{ mm} \rightarrow \delta = -0.635 \%,$ $2J_{\text{max}} = 0.375 \ \mu \text{m}.$

T. Yoshimoto | The 27th KEKB Accelerator Review

[1] M. Kikuchi, "Simulation of the injected beam in HER (2)", SKB Commissioning meeting, Dec. 22, 2023, https://kds.kek.jp/event/49259/

Synchro-beta Injection (2)

Synchro-beta injection scheme

· Betatron injection scheme

 $\delta = 0 \%$

With Cancel-coil error

Super ĸĖĸв 0 [1] M. Kikuchi, "Simulation of the injected beam in HER (2)", SKB Commissioning meeting, Dec. 22, 2023, https://kds.kek.jp/event/49259/

3/25/2024

Summary

Positron BT:

- No bunch charge dependence of beam emittances after DR.
- No bunch-charge dependence of beam emittances. => No wakes, No CSR wakes
- There are magnetic errors in Arc3 to explain the horizontal and vertical emittance blowups.
- BTp-Arc1 modification with 14-mm vertical offset does not degrade beam qualities.
- Raw injection efficiency is ~90%.

Electron BT:

- The vertical blowup is necessary to be mitigated, prior to high-current operation.
- Undesigned vertical dispersion was observed in Arc 1.
- QCS cancel-coil errors reduce on-momentum dynamic aperture by ~25%.
 => It reduces HER Injection efficiency.
- Raw injection efficiency is ~40% due to vertical emittance blowup in BT.

=> Synchro-beta injection is an option.

Thank you !

LER / HER Ring Acceptance Summary

LER				HER				Y. Ohnishi	
βy*	8 mm	3 mm	1 mm: CW OFF	1 mm: CW 80 %	β _y *	8 mm	3 mm	1 mm: CW OFF	1 mm: CW 40 %
	Feb. 19, 2024	March 4, 2024	March 6, 2024	March 18, 2024		Feb. 20, 2024	March 4, 2024	March 5, 2024	March 18, 2024
2J _× (m)	2.5 x 10 ⁻⁶ 25 σ _x 9.49 x 10 ⁻⁷ 15 σ _x	2.24 x 10 ⁻⁶ 23.6 σx 4.88 x 10 ⁻⁶ 35 σx	1.13 x 10 ⁻⁶ 16.8 σx 3.37 x 10 ⁻⁶ 29 σx	8.99 x 10 ⁻⁷ 15.0σx 3.37 x 10 ⁻⁶ 29 σx	2J _× (m)	3.89 x 10 ⁻⁶ 28.9 σx 2.92 x 10 ⁻⁶ 25 σx	2.11 x 10 ⁻⁶ 21.8 σx 3.31 x 10 ⁻⁶ 27σx	1.34 x 10 ⁻⁶ 17.4 σ _x 2.77 x 10 ⁻⁶ 25σ _x	1.13 x 10 ⁻⁶ 16.0 σ _x 2.77 x 10 ⁻⁶ 25σ _x
						Feb. 26, 2024	Feb. 29, 2024	March 14, 2024	March 18, 2024
γ2J _y (μm)	-	-	-	-	γ2J _y (μm)	1426 6413	1187 3982	649 973	712 973
	Feb. 27, 2024	Feb. 29, 2024	March 6, 2024	March 18, 2024		Feb. 20, 2024			
Δp/po (%)	0.58 1.03	0.38 1.26	0.53 1.33	0.61 1.11	Δp/p ₀ (%)	0.69 1.07	-	-	-

green: tracking simulation with collimator aperture

3/25/2024

BTp-Arc1 Bump Height Study @ MSP 8

Scheme:

Change ver. bump height in BTp-Arc1 to confirm whether wake (bunch-charge dependence) effects including CSR ones are significant or not.

ECS-Es

(kV)

35

200

180

160

ω^č 140

(*mm*)

Normalized

hor. emittance

3 nC

1 nC

σ

 $\overline{\mathbf{O}}$

Mismatch factor: *B_{mag}*

 \mathbf{O}

0

3 nC

1 nC

 \mathbf{O}

 \mathbf{O}

2.0

1.8

× 1.6 *B* 1.4

Multipoles on BH2P/BH3P (refined bend model)

 The model of BH3P is refined to represent the magnet and field measurement more correctly:

A modification of SAD was necessary to put arbitrary edge angles in MULT.

K. Oide, Feb. 14, 2024 @ICG Multipole calculation, quad roll: M. Tawada Perm. skew Q: M. Kikuchi Emittance meas. @BT1 T. Yoshimoto Sext. meas., Lattice, initial particles, etc.: N. Iida, Y. Seimiya, T. Yamaguchi

	BH2P	BH3P
SK0	4.54E-18	-5.202E-07
SK1	2.787E-04	3.867E-04
SK2	2.465E-15	-3.130E-03
SK3	-1.903E-01	-4.740E+00
SK4	6.518E-11	1.172E+01
SK5	3.609E+02	2.436E+04
ко	-7.106E-02	-2.119E-01
К1	-5.427E-16	1.039E-03
K2	2.907E-01	1.843E+00
КЗ	-3.099E-12	-3.870E-01
K4	-2.771E+02	4.396E+01
K5	3.011E-09	1.333E+03

M. Tawada https://kds.kek.jp/event/32764/ contributions/157768/attachments/126065/149470/ EPTF-190927.pdf

3/25/2024

Various BTe Emittance Data:

 $\Delta \phi$ (SB3-5) = -4°

J-Arc R₅₆: 0 m

BT1 (WS)	0.8 nC	1.1 nC	1.3 nC	1.5 nC	1.6 nC	
γεχ [μm]	43.8±9.4	47.0 ± 6.1	43.8±4.8	40.9±7.3	47.1±6.9	
γε y [μm]	40.1±7.2	48.3±12.7	53.5±6.3	45.3 ± 6.1	49.0 ± 5.1	
BT2 (MSE.16)	0.8 nC	1.1 nC	1.3 nC	1.5 nC	1.6 nC	
			2022/Jun/27			
γεx [μm]	96.6 ± 0.82	117 ± 1.3	126 ± 1.7	122.9 ± 2.2	127.9 ± 2.1	
γε γ [μm]	104.8 ± 4.2	78.9 ± 1.9	57.3±1.7	50.8 ± 1.0	68.5 ± 2.3	

J-Arc R ₅₆ : 0.3 m			1.0 nC	0.9 nC	1.6 nC	2.2nC	2.0 nC
			2021/3/26		2022/Nov/5		2024/Feb/12
	BT1 (WS)	γεχ [μm]	50	33.2± 8.0		51.5 ± 15.7	95.2 ± 15.3
		γεγ [μm]	30	40.8±11.1		48.0±14.3	81.9±13.4
	BT2 (MSE.16)	γεχ [μm]	100	164.0 ± 3.8	167.3 ± 1.8	231.3 ± 6.0	230±58

50

 81.0 ± 5.2

γε**γ** [μm]

 127.7 ± 39.3

182±14

 50.5 ± 2.3

1.8 nC

2024/Feb/28

78

 143 ± 3.2

 218 ± 3.5