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So, no, you shouldn't reinvent the wheel. Unless you plan on learning more about wheels, that is.

https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-plan-on-learning-more-about-wheels/



A kinematical method to evaluate synchrotron radiation

Let g denote the orientation vector of the momentum of a particle:

q_(px Py pz>
=

e \/pQ—pi«—pi -

Suppose a particles traverses a section (1, 2) of an accelerator component, then
the orientation changes from q; to g>. The bending angle ¢ and the radius of
curvature p are approximated, assuming a uniform bending, by:
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where Li is the nominal length of the component between 1 and 2, and z; o are
the values of longitudinal coordinate z = —v(t — tg) at the locations 1 and 2.
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Merits of the kinematical method

By knowing ¢ and p as well as the momentum of the particle, we can derive
all information about the emission of synchrotron radiation (if we can use a
classical formula with uniform bending).

e Thus the synchrotron radiation can be handled by a single routine for any
type of component, such as multipole, solenoid, fringe field, even including
electric field, without knowing details of the field.

e Not only the radiation itself, its derivatives by phase space coordinated
can be obtained kinematically using the transter matrix.

e This method may be applied for a spin motion if the longitudinal filed is
taken care properly.



Emittance by Gaussian Fit

Q: How can we evaluate the emittance £, and Twiss parameters a,, £, af
particles in the phase space (x,p,) using Gaussian fit?

A: A possible way, assuming the center of mass is (0,0):
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e Iirst, obtain o, and o,, by 1D Gaussian fits, respectively.
e Then normalize  and p, by o, and o,,, respectively:
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e We notice in the phase space (X, P,), the beam is always 45° tilted! — =
e Thus the emittance in the (X, P,) space is the product of sigmas o of: :-'_;:
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which are again obtained by 1D Gaussian fits.

e The emittance in the original (z, p,) space, a, and [ are written as:

where r =o0_/o..

e Above has been implemented as FitEmit [x, px] in SAD.



Confidential interval of functions of fit parameters

Let us consider a multidimensional fit of data:
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by a function f(z;aq,...,a,,) with fit parameters a = (a1, ..., a,,). This is done
by minimizing
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where Ay, is the standard deviation of the data at z;. o8 e
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At the optimum point of a, The confidence interval of parameters a; corre-
sponding to 68% confidence is expressed as:

ACLZ' = i\/AX%%\/Cm ,

where Cj; is the i-th diagonal part of the covariance matriz C, and Ax,,/2 is
the solution of Q(m/2,x) = erfc(1/4/2). The matrix C is written as ;

Figure 15.6.5. Relation of the confidence region ellipse Ax?> = 1 to quantities computed by singular
value decomposition. The vectors V(;y are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values . If the axes are all scaled
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by some constant factor v, Ax? is scaled by the factor o?.
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where the matrix V and singular value w; are the singular decomposition (SVD)
of the design matriz
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Confidential interval of functions of fit parameters (cont’d)

Then the question is how to estimate the confidence interval of other set of
parameters b = b(a). Actually (I think) it is not possible to calculate them
only with the intervals for a and the relation b = b(a) in general.

The design matrix for parameters b should become:
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To define the covariance matrix associated with B, we need the SVD of B,

which cannot be obtained by the SVD of A without a full calculation of the
SVD of B, unless M has special characteristics.
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A =Uldiaglwr = wm) Vs
B = AM = U diag(w’,, ..., w., )V’ .
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The Fit or FitPlot functions in SAD have not output the design matrix
A, which is necessary to calculate the SVD of B or the confidence interval of b.
Now they return it under the tag DesignMatrix.



Synchrotron radiation 1n a transport line

A formula for transverse emittance generated by synchrotron radiation some-
thing like

Ex X /”Hx/)p]Sds :
with

H, = ”7:1:77;2,; = 2043377937719:13 i 5:1:7733

i1s not applicable to a single-pass beam transport line, since the above assumes
a matching to the ring Twiss parameters after many turns of circulation.

For an extreme case, if the radiation source is very thin, the radiation-excited
particles will align on a straight line (R149, R260) in the phase space, and its
emittance is zero. Due to chromaticity, etc., the line will be smeared to have
some finite emittance, but it is not expressed by the above expression.
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