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Elements and Keywords

Definition Syntax:

Main Level:

element type element = (keyword = expr . ...)

element1 = (keyword = expr . ...)

... ;

Example:

QUAD QF1 = (L = 0.5 K1 = 0.1)

QD1 = (L = 0.5 K1 = -0.1);

Function:

SetElement[element, type, { keyword->value, ...}]

Example:

SetElement["QF1", "QUAD", {"L"->0.5, "K1"->0.1}];
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element keywords

APERT aperture COUPLE DP DX1 DX2 DY1 DY2 JDPX JDPY

BEAMBEAM beam-beam

AX AY AZ BX BY COUPLE DP DPX DPY DX DY DZ

EMITX EMITY EPX EPY EX EY NP R1 R11 R12 R13

R14 R15 R16 R2 R22 R23 R24 R25 R26 R3 R33

R34 R35 R36 R4 R44 R45 R46 R55 R56 R66 SIGZ

SLICE STURN XANGLE ZPX ZPY ZX ZY

BEND dipole
ANGLE COUPLE DISFRIN DISRAD DX DY E1 E2 EPS

F1 FRINGE K0 K1 L RANKICK ROTATE

CAVI rf cavity

COUPLE DPHI DX DY FREQ HARM L LWAKE PHI

RANPHASE RANVOLT ROTATE TWAKE V02 V1 V11 V20

VOLT

COORD
coordinate
transforma-
tion

CHI1 CHI2 CHI3 COUPLE DIR DX DY DZ

DECA decapole COUPLE DISFRIN DISRAD DX DY K4 L ROTATE

DODECA dodecapole COUPLE DISFRIN DISRAD DX DY K5 L ROTATE

Table 1: Keywords of SAD elements.
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element keywords

DRIFT drift space COUPLE DISKIN L RADIUS

INS insertion
AX AY BX BY COUPLE DIR DPX DPY DX DY EPX EPY

EX EY PSIX PSIY R1 R2 R3 R4

MAP external map COUPLE

MARK marker

AX AY AZ BX BY COUPLE DDP DP DPX DPY DX DY

DZ EMITX EMITY EPX EPY EX EY GEO JDPX JDPY

JDPZ JDX JDY JDZ OFFSET PSIX PSIY R1 R2 R3

R4 SIGZ

MONI monitor COUPLE DX DY OFFSET ROTATE

MULT
universal
multipole

CHI1 CHI2 COUPLE DISFRIN DISRAD DPHI DX DY

DZ EPS F1 F2 FREQ FRINGE HARM K0 K1 K10 K11

K12 K13 K14 K15 K16 K17 K18 K19 K2 K20 K21

K3 K4 K5 K6 K7 K8 K9 L PHI RADIUS ROTATE SK0

SK10 SK11 SK12 SK13 SK14 SK15 SK16 SK17 SK18

SK19 SK2 SK20 SK21 SK3 SK4 SK5 SK6 SK7 SK8

SK9 VOLT W1

Table 2: Keywords of SAD elements (cont’d).
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OCT octupole COUPLE DISFRIN DISRAD DX DY K3 L ROTATE

PHSROT
phase space
rotation

AX AY AZ B11 B12 B13 B14 B15 B16 B22 B23 B24

B25 B26 B33 B34 B35 B36 B44 B45 B46 B55 B56

B66 BX BY BZ COUPLE D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26 D31 D32 D33 D34 D35

D36 D41 D42 D43 D44 D45 D46 D51 D52 D53 D54

D55 D56 D61 D62 D63 D64 D65 D66 DP DZ EMITX

EMITY EMITZ EPX EPY EX EY JDPY JDY PSIX PSIY

PSIZ R1 R2 R3 R4 SIGZ ZPX ZPY ZX ZY

QUAD quadrupole
ACHROMA COUPLE DISFRIN DISKIN DISRAD DX DY

EPS F1 F2 FRINGE K1 L ROTATE

SEXT sextupole COUPLE DISFRIN DISRAD DX DY K2 L ROTATE

SOL solenoid
BOUND BZ CHI1 CHI2 CHI3 COUPLE DBZ DPX DPY

DX DY DZ F1 GEO L

TCAVI
transverse
cavity

COUPLE DX DY FREQ HARM K0 L LWAKE PHI

RANKICK RANPHASE ROTATE TWAKE

Table 3: Keywords of SAD elements (cont’d).
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overlapped element

In the real world, many elements are placed overlapping to each other. For instance,

• quadrupoles in nonuniform solenoid (e.g. Belle & QCS).

• Quads, dipoles, solenoids on accelerating structure (e.g. Linac).

Though these components can be expressed using SOL and MULT in the current version of SAD,
they are uneasy to handle.

A BEND element with “multipoles” or acceleration is not possible to express yet. Even it is
not impossible to define “multipoles” in the curved coordinate, but it will be impractical to use
such quantity for magnet measurements which are usually done in Cartesian system.
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Beam Line

Definition Syntax:

Main Level:

LINE beamline = (element1, element2, ...);

Example:

LINE L1 = (START QF1 QD1);

Function:

BeamLine[element1, element2, ...]

Example:

l = BeamLine["START", "QF1", "QD1"];

FFS["USE l"];
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construction of beam line

A beam line is a series of elements.

• Elements are appended to the previous one, with the local coordinate at the exit of the
previous element.

• A BEND element rotates the local coordinate accroding to its value of ANGLE.

• A general coordinate transformation is possible by COORD element.

local coordinate

• The local coordinate is a right-hand system.

• The s-axis points the direction of the beam line.

• A BEND element rotates the local coordinate around the y-axis by −ANGLE, when ROTATE

is zero.

• For any elements, the keyword ROTATE rotates the element (and the local coordinate)
around the local s-axis by −ROTATE at the entrance, and rotates back at the exit.
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• The rotation is done after taking out the offset given by (DX, DY) at the entrance, and
before resetting the offset at the exit.

• At the entrance of SOL the coordinate is automatically set to the axis of SOL. At the exit
it resets to the design orbit. In both cases, The angle χ3 (see below) is set to zero after
the transformation.

geometry coordinate

The relation between the local coordinate (x, y, s) at each element and the global geometric
coordinate (ξ, η, ζ) is shown by DISPLAY GEOMETRY (abbrev. DISP G) command.

• The global coordinate defaults its origin at the beginning of the beam line, and the axes
are (ξ, η, ζ) = (s,−x,−y).

• The global coordinate can be changed by ORG command.

The rotation of the local coordinate is expressed by three angles as shown in Fig. 1.

9



χ1
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s0 = ξ
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χ1

Figure 1: Rotation of the local coordinate is expressed by angles χ1, χ2, and χ3.

coordinate and orbit

• The coordinate and the orbit are different things.

• In usual cases the coordinate is placed on the design orbit, but they become different by
using SOL, misaligned elements, elements with K0 as the “design”, or COORD elements.

• To avoid confusion, there is a flag GEOFIX (default: OFF).
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• When GEOFIX is ON, the coordinate is fixed by changing alignment, etc.

• The design momentum p0(s) works as a part of the coordinate system.

• GEOFIX also fixes p0(s). This is important in a linac.
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Transformation

Different transformations are used in TRACK, EMIT, and FFS. FFS uses the same routines for orbit
and matrix calculation as EMIT’s, but uses its 4 by 5 submatrix for the optics parametrization.

TRACK EMIT FFS

orbit tracking 6D symplectic 6D symplectic 6D symplectic

matrix – 6D 4 by 5

radiation loss when RAD when RADCOD –

rad. diffusion
classical(TRPT),
Gaussian(RING) as beam matrix –

acceleration OK OK OK

wake field (obsolete) – OK

space charge static approx. – –

intrabeam – beam matrix –

Table 4: Comparison of transformations in TRACK, EMIT, and FFS.

DRIFT

Transformation in DRIFT is done analytically (without parallel or ultra-relativistic approxima-
tions).
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BEND

• The body of BEND is treated analytically even with the edge angles, when K1 is zero.

• The non-analytic part consists of the linear fringe (leak of the field from the edge), non-
linear fringe at the first order, and field index (K1).

The entire transformation is:

(drift to the entrance face)

x2 = x1/(cos(psi1) - sin(psi1) (px1/pz1))

px2 = px1 cos(psi1) + pz1 sin(psi1)

y2 = y1 + (py1/pz1) x2 sin(psi1)

z2 = z1 - (p1 /pz1) x2 sin(psi1) ,

where psi1 = ANGLE * E1;

(linear fringe at entrance face)

x2 = x1 + dxfr (p1 - p0)/p1

py2 = py1 + dyfr y1/p1^2

z2 = z1 + (dxfr px1 + dyfr y1^2/(2 p1))/p1

where dxfr = F1^2/(24 rhob) ,

dyfr = F1/(6 rhob^2) ,

rhob = L’/(ANGLE + K0) ,

L’ = L - (ANGLE F1)^2 /(24 L)
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* sin(ANGLE (1 - E1 - E2)/2)/sin(ANGLE/2)

(nonlinear fringe at entrance)

x2 = x1 + y1^2 p1^2/(2 rhob (p1^2 - px1^2)^(3/2))

py2 = py1 - px1 y1/(p1 rhob sqrt(p1^2 - px1^2))

z2 = z1 - px1 y1^2 p1/(2 rhob (p1^2 - px1^2)^(3/2))

(body of bend)

px2 = -rho0/rhob (sin(psi2) + sin(omega + psi1))

+ sin(omega) pz1 + cos(omega) px1

- x1/rhob sin(omega)

x2 = x1 cos(omega)

+ rhob (pz2 - cos(omega) pz1 + sin(omega) px1)

+ rho0 (cos(omega+psi1) - cos(psi2))

y2 = y1 + py1/sqrt(p1^2 - py1^2) s

z2 = z1 - s p1/sqrt(p1^2 - py1^2) + v1/v0 L’

where rho0 = L’/ANGLE

omega = ANGLE - psi1 - psi2

s = rhob ANGLE (arcsin(px1/sqrt(p1^2 - py1^2))

- arcsin(px2/sqrt(p2^2 - py2^2)) + omega)

(nonlinear fringe at exit)

x2 = x1 - y1^2 p1^2/(2 rhob (p1^2 - px1^2)^(3/2))

py2 = py1 + px1 y1/(p1 rhob sqrt(p1^2 - px1^2))

z2 = z1 + px1 y1^2 p1/(2 rhob (p1^2 - px1^2)^(3/2))
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(linear fringe at entrance face)

x2 = x1 - dxfr (p1 - p0)/p1

py2 = py1 + dyfr y1/p1^2

z2 = z1 + (-dxfr px1 + dyfr y1^2/(2 p1))/p1

(drift from the exit face)

px2 = cos(psi2) px1 + sin(psi2) pz1

x2 = x1 (cos(psi2) + px2/pz2 sin(psi2))

y2 = y1 + py2/pz2 x1 sin(psi2)

z2 = z1 - x1 sin(psi2) p2/pz2

where psi2 = ANGLE * E2;

If K1 is nonzero, the effects from E1 and E2 are approximated by thin quadrupoles. Then the
body is subdivided into

1 + Floor[Sqrt[Abs[K1 L’]/(12 10^-5 EPS)]]

slices
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QUAD

• As there is no analytical solution of the transformation for the body of a quadrupole,
SAD splits the Hamiltonian into the linear and residual nonlinear parts.

• A quadrupole body is sliced, and for each slice, the linear part is tracked analytically, and
the residual part is applied as a kick:

(nonlinear fringe at entrance)

canonical transformation by a generating function

G(x1, px2, y1, py2, p1)

= H0(x1, px2, y1, py2, p1)

+ (D[H0, x1] D[H0, px2] + D[H0, y1] D[H0, py2])/2

where H0 = px2 dx1 + py2 dy1

dx1 = x1 (a/3 + b)

dy1 = -y1 (a + b/3)

a = K1 x1^2/p1/4

b = K1 y1^2/p1/4 .

(linear fringe at entrance)

px2 = exp(-a) px1

py2 = exp(a) py1
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x2 = exp(a) x1 + b px1

y2 = exp(-a) y1 - b py1

z2 = z1 - (a x1 + b (1 + a/2) px2) px1

+ (a y1 + b (1 - a/2) py2) py1

where a = -K1 F1 abs(F1)/(24 p1 L)

b = K1 F2/L .

F1 and F2 are parameters to characterize the slope of

the field at the edges defined as:

F1 = SIGN(Sqrt[a],a), a = 24(I_0^2/2 - I_1),

F2 = I_2 - I_0^3/3

with

I_n = Integrate[(s-s0)^n K1[s]/K1_0,

{s,-Infinity,Infinity}],

(body of quad)

The body is subdivided in

n = 1 + Floor[10 Abs[(K1 L)/EPS]

(EPS = 1 is used when EPS = 0),

then a transversely linear transformation

exp(:H:) is done in each slice with

H = ((-p + (px^2 + py^2)/(2 p) + E/v0) L

+ K1 (x^2 - y^2)/2)/n .
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Between slices applied is the correction exp(:dH:)

for the kinematical term with

dH = (-sqrt(p^2 - px^2 -py^2) + p

- (px^2 + py^2)/(2 p)) L/n .

In a solenoid, the forms of H and dH are modified.

(linear fringe at exit)

px2 = exp( a) px1

py2 = exp(-a) py1

x2 = exp(-a) x1 + b px1

y2 = exp( a) y1 - b py1

z2 = z1 + (a x1 - b (1 - a/2) px2) px1

- (a y1 - b (1 + a/2) py2) py1

where a = -K1 F1 abs(F1)/(24 p1 L)

b = K1 F2/L .

(nonlinear fringe at exit)

canonical transformation by a generating function

G(x1, px2, y1, py2, p1)

= H0(x1, px2, y1, py2, p1)

+ (D[H0, x1] D[H0, px2] + D[H0, y1] D[H0, py2])/2
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where H0 = px2 dx1 + py2 dy1

dx1 = x1 (a/3 + b)

dy1 = -y1 (a + b/3)

a = -K1 x1^2/p1/4

b = -K1 y1^2/p1/4 .

SEXT, OCT, DECA, DODECA

The transformation in a 2(n+1)-pole is given as

exp(:Fin:)exp(:a L:)exp(:Hn/2:)exp(:b L:)

*exp(:Vn:)exp(:a L:)exp(:Hn/2:)exp(:b L:)exp(:Fout:) ,

where L and Hn are Hamiltonians of a drift of length L

and a thin 2(n+1)-pole kick of integrated strength Kn:

Hn = Kn/(1+n)! Re((x - I y)^(1+n)) ,

respectively. The coeffients are a = 1/2 - 1/sqrt(12)

and b = 1/2 - a.

Terms exp(:Fin:) and exp(:Fout:) are transformations for
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entrance and exit nonlinear fringes.

The term exp(:Vn:) is a correction to adjust

the third-order terms in L:

Vn = (SUM over j=(x,y), k=(x,y)) [

- beta/2 (Hn,k)^2

+ gamma (Hn,j Hn,k Hn,j,k)] ,

where ,i represents the derivertive by x or y.

We have also introduces two

coefficients beta = 1/6 - 1/sqrt(48) and

gamma = 1/40 - 1/24/sqrt(3).

CAVI

• CAVI simulates an accelerating structure. It is basically a thin acceleration. When its
length L is specified, CAVI is sliced into pieces, consisting drifts and thin accelerations.

• It does not represent any realistic field pattern or “rf fringe field” .

20



MULT

• MULT is a universal element to express an overlapped elements with multipoles and accel-
eration.

• The basic idea of the transformation is same as QUAD: Divide the body into slices, solve
linear term analytically, correct nonlinear by kicks.

SOL

• The basic characterlistics of the transformation of elements above are applicable when an
element is placed within a slolenoid field, if the body of the solenoid field is constant.

• Since SOL only accepts a constant BZ, when the solenoid field is non-uniform in s, one
have to prepare a deck with many solenoids.

• The fringe field of the solenoid is applied automatically, as the continuity of the canonical
momenta.
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Optical Functions

In FFS, optics are represented by 20 optical functions listed in Table 5. Note that FFS calculates
only 4 by 5 optics.

function function
AX αX AY αX

BX βX BY βY
NX ψX NY ψY

EX ηX EY ηY
EPX ηPX EPY ηPY

R1 r1 R2 r2
R3 r3 R4 r4
DX x DY y
DPX px DPY py
DZ z DDP ∆p

Table 5: Optical functions in FFS. The notation assmes the momenta (px, py,∆p) to be nor-
malized by the local design momentum p0(s).
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The transformation from the physical coordinate to the normal coordinate is given by
X
PX

Y
PY

 =


µ 0 −r4 r2
0 µ r3 −r1
r1 r2 µ 0
r3 r4 0 µ



x
px
y
py

−


ηX
ηPX

ηY
ηPY

∆p , (1)

where µ2 + (r1r4 − r2r3) = 1.

acceleration

When the design coordinate involves acceleration such as in a linac, the parametrization is done
for a scaled coordinate: (

x/
√
βγ(s), px

√
βγ(s), y/

√
βγ(s), py

√
βγ(s)

)
where βγ(s) = p0(s)/(mc). Note that above is still a symplectic variables. The resulting Twiss
parameter gives the usual relation:

〈x(s)2〉 = βx(s)εx(s) , etc.,

being εx(s) the physical emittance at s.
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physical dispersion

The dispersion functions in Eq. 1 are dispersion in the normal coordinate. Sometimes the
physical dispersions 

ηx
ηpx
ηy
ηpy

 ≡


µ 0 r4 −r2
0 µ −r3 r1
−r1 −r2 µ 0
−r3 −r4 0 µ




ηX
ηPX

ηY
ηPY


are more convenient. The physical dispresions are denoted by PEX, PEPX, PEY, PEPY, respectively.

Matching

Matching of optics by SAD/FFS has the following characterintics:

• Using multi dimension, multi variable Newton’s method with Singular Value Decomposi-
tion (SVD) as the main method, supplemented by the steepest descent method.

• appropreate choice of functions. For instance, matches log βx instead of βx.

• matches geometry of a beam line together with optical functions.

• fuzzy logic to determine the local minimum and switching the methods.
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• off-momentum matching.

• finite-amplitude matching.

• boosted by various SADScript functions.

Newton’s method with SVD

• For mathching functions fi and variables xk, solve

∆fi =
∑
k

∂fi
∂xk

∆xk , (2)

using SVD.

• Search the minimum along the vector ∆xk using prediction with cubic interpolation.

• The derivatives are obtained either analytically or numerically.

SADScript functions used in matching

Mathing by FFS has become more powerful by using various SADScript functions:
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name purpose

ElementValues to specify dependences beween variables
FitFunction to match any number of any function

FitValue
to change the goal; to set minimum or
maximum of the function.

FitWeight to change the weight of functions
InitialOrbits to set the initial condition of many orbits
MatchingAmplitude finite-amplitude matching
OpticsEpilog to do additional task after calculation
OpticsProlog to do additional task before calculation
VariableRange to set the range of variables

Table 6: SADScript functions for matching.
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off-momentum matching

Off-momentum matching is the method of chromaticity correction in SAD.

• If a matching condition is give as

function value n ,

matching is done for n = 2m+ 1 off-momentum points

∆p = DP0 + DP k/m (k = −m,m) , (3)

when n is odd.

• When n = 2m is even, the off-momenta are same as the case n = 2m+ 1, Eq. 3, but the
k = 0 is excluded.

• The function FitValue can change the goal value of matching for each momentum.

• FFS uses no perturbation to calculate the off-momentum optics.
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finite-amplitude matching

Finite-amplitude matching is an extension of off-momentum matching to the transverse phase
space.

MatchingAmplitude = {{∆p1, nx, ny}, ...};

sets matching conditions for the orbits on ∆p = ∆p1, with initial offset

(x, px, y, py) =

{
(xk cosφx, xk sinφx, 0, 0)
(0, 0, yk cosφy, yk sinφy)

, (4)

where φx,y = (0, 2π/3, 4π/3) and (xk, yk) = (nx, ny)
√

2βx,y(εx + εy).

• The orbits with the initial offsets never close at the end of the ring, but it is just ignored.

• x-y coupled initial conditions can be given by Initial Orbit.
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Figure 2: Effect of the finite-amplitude matching(FAM) method. The dashed and solid lines show the

dynamic apertures, averaged over 100 samples, before and after FAM, respectively. The FAM orbits

are shown by markers (Oide, Koiso, Ohmi, 1996).
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settings. (B): Distribution of the dynamic apertures (Oide, Koiso, Ohmi, 1996).
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Extension of SAD

There are several ways to extend SAD for match one’s needs. What follows are list of them,
from easier to harder.

• Write your own SADScript functions. This is the easiest unless you need very fast simu-
lation.

• If you need hard simulation, but if the interaction between SAD is small, write an interface
to your code in SADScript. This is easy, too. This was done for DA Taylor map and E.
Forest’s code, or to import results of TRANSPORT. It would be also done to revitalize
SODOM.

• Write a new compiled function for SADScript. This is hard, but the rules are not so
many.

• Add a new element for SAD. You have to write different routines for tracking, emittance,
and matching.

These difficulties will be solved in various ways, hopefull not much far from now.
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